Near-Colorings: Non-Colorable Graphs and NP-Completeness
نویسندگان
چکیده
A graph G is (d1, . . . , dl)-colorable if the vertex set of G can be partitioned into subsets V1, . . . , Vl such that the graph G[Vi] induced by the vertices of Vi has maximum degree at most di for all 1 6 i 6 l. In this paper, we focus on complexity aspects of such colorings when l = 2, 3. More precisely, we prove that, for any fixed integers k, j, g with (k, j) 6= (0, 0) and g > 3, either every planar graph with girth at least g is (k, j)-colorable or it is NP-complete to determine whether a planar graph with girth at least g is (k, j)-colorable. Also, for every fixed integer k, it is NP-complete to determine whether a planar graph that is either (0, 0, 0)-colorable or non-(k, k, 1)-colorable is (0, 0, 0)-colorable. Additionally, we exhibit non-(3, 1)colorable planar graphs with girth 5 and non-(2, 0)-colorable planar graphs with girth 7.
منابع مشابه
Acyclic Coloring with Few Division Vertices
An acyclic k-coloring of a graph G is a mapping φ from the set of vertices of G to a set of k distinct colors such that no two adjacent vertices receive the same color and φ does not contain any bichromatic cycle. In this paper we prove that every planar graph with n vertices has a 1-subdivision that is acyclically 3-colorable (respectively, 4-colorable), where the number of division vertices i...
متن کاملOn interval edge-colorings of bipartite graphs of small order
An edge-coloring of a graph G with colors 1, . . . , t is an interval t-coloring if all colors are used, and the colors of edges incident to each vertex of G are distinct and form an interval of integers. A graph G is interval colorable if it has an interval t-coloring for some positive integer t. The problem of deciding whether a bipartite graph is interval colorable is NP-complete. The smalle...
متن کاملThe complexity of coloring graphs without long induced paths
We discuss the computational complexity of determining the chromatic number of graphs without long induced paths. We prove NP-completeness of deciding whether a P 8-free graph is 5-colorable and of deciding whether a P 12-free graph is 4-colorable. Moreover, we give a polynomial time algorithm for deciding whether a P 5-free graph is 3-colorable.
متن کاملOn the Hardness of 4-Coloring a 3-Colorable Graph
We give a new proof showing that it is NP-hard to color a 3-colorable graph using just four colors. This result is already known [18], but our proof is novel as it does not rely on the PCP theorem, while the one in [18] does. This highlights a qualitative difference between the known hardness result for coloring 3-colorable graphs and the factor n hardness for approximating the chromatic number...
متن کاملTreedepth Bounds in Linear Colorings
Low-treedepth colorings are an important tool for algorithms that exploit structure in classes of bounded expansion; they guarantee subgraphs that use few colors are guaranteed to have bounded treedepth. These colorings have an implicit tradeoff between the total number of colors used and the treedepth bound, and prior empirical work suggests that the former dominates the run time of existing a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electr. J. Comb.
دوره 22 شماره
صفحات -
تاریخ انتشار 2015